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1 Noise and Quantum Channels

1.1 General model of noise

The general model of noise we use in quantum computing is given by a quantum channel,
which we typically call N (ρ). In the Kraus representation:

N (ρ) =
∑
i

EiρE
†
i s.t

∑
i

EiE
†
i = I.

You can think of each Ei as specifying an error on the state and the channel N (ρ) as giving
a mixture of these errors in which we output:

EiρE
†
i

PEi|ρ
w.p. PEi|ρ = tr(EiρE

†
i ).

In this class, we often look at cases when ρ is a pure state |ψ⟩ ⟨ψ|. N (|ψ⟩ ⟨ψ|) in this case
outputs:

1

PEi|ψ
Ei |ψ⟩ w.p. PEi|ψ) = ⟨ψ|E†

iEi |ψ⟩ .

1.2 More one-qubit of channels

Last time we looked at some channels you might see including the dephasing and depolarizing
channel; however unlike the depolarizing channel, noise is typically biased. To deal with this
we introduce the general Pauli channel.
General Pauli Channels:

N (ρ) = PXXρX + PY Y ρY + PZZρZ + (1− PX − PY − PZ)ρ

If you have a qc you might need to spend time to benchmark each Pi, but in doing so you
can get a better error-correcting code.
Measurement Channel: given |ψ⟩ = a |0⟩+ b |1⟩

N (|ψ⟩ ⟨ψ|) = |a|2 |0⟩ ⟨0|+ |b|2 |1⟩ ⟨1|
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Here there are two Kraus operators: E0 = |0⟩ ⟨0| and E1 = |1⟩ ⟨1|. This is an example of a
case where Kraus operators are non-unitary and the probability of E0 or E1 is dependent on
the state. In this case though, you can remove this dependence as the measurement channel
is the same as the dephasing channel with p = 1/2: N (ρ) = 1

2
ρ+ 1

2
ZρZ.

Erasure Channel:

N (ρ) = (1− p)ρ+ p |e⟩ ⟨e|

Here |e⟩ denotes an erasure symbol or a state that is not a part of the basis. Types of errors
like this are nice to work with, as you know exactly where the error is, due to the error
message. An example where you might see this error is if your qubits are ions where |0⟩ is
the ground state and |1⟩ is the 1st excited state. There is a chance in computation that a
qubit gets excited to the second excited state which we can denote by |e⟩, as it is not in our
|0⟩ , |1⟩ basis. Another example is if your qubit is a photon and it leaves/disappears (leakage
error).
Amplitude Damping Channel:

N (ρ) = E0ρE
†
0 + E1ρE

†
1

E0 =

(
1 0
0

√
1− γ

)
, E1 =

(
0

√
γ

0 0

)
If it is in the |0⟩ state then nothing happens, but if it is in the |1⟩ state then there is a chance
that it decays to the |0⟩ state. This is more easily seen in the Stinespring representation of
a quantum channel:

U |0⟩ |0⟩E = |0⟩ |0⟩E
U |1⟩ |0⟩E =

√
1− γ |1⟩ |0⟩E +

√
γ |0⟩ |1⟩E

Here, again, the error you have depends on the input state. An example where you might
see this error is if your qubits are ions where |0⟩ is the ground state and |1⟩ is the 1st excited
state. Then, there is a chance that the excited state might decay into the ground state.

1.3 n-qubit channels

In this class, we care about n-qubit channels. The most basic of which is an independent
channel. In QEC you can get channels that aren’t independent, but looking at independent
ones first helps before going further.

Def: N is an independent channel if N = E1 ⊗ E2 ⊗ · · · ⊗ En
ex:

N = E⊗n E(ρ) = (1− p)ρ+ pZρZ (dephasing channel)
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Z Z Z

n-qubits

expect ≈ p · n errors

Because each error is independent you expect to not see more than p · n errors due to the
Chernoff bound.
Chernoff Bound:
Let X1, X2, · · · , Xn ∈ {0, 1} be independent r.v.’s such that Pr[Xi = 1] = p. If Xi = 1, you
can think of it as there is an error on qubit i.
Let S = X1 + · · ·+Xn and µ = E[S] = p · n, by linearity of expectation. Then, the Chernoff
bound states:

Pr[S ≥ µ+ δn] ≤ 1

e2nδ2
where δ is a parameter we choose

Ex: if p = 1
2
then the probability that we don’t get δ = 0.01n more than 1

2
is:

Pr[S ≥ n

2
+ 0.01n] ≤ 1

e2n·0.012
=

1

eθ(n)

The probability that the number of errors is significantly bigger than the expected value is
exponentially unlikely. So, we will just assume going forward that the number of errors is
bounded by the expectation. With the channel in the example, sometimes there is an error,
sometimes not, but they can also do other things. Sometimes, an error always happens, but
it is small.
With the rotation channel:

Rθ =

(
e−iθ 0
0 eiθ

)
If θ is small and Rθ ≈ I except with a small error, you can simulate it as only having an
error on a small number of qubits.

Def :

• A1 ⊗ · · · ⊗ An has weight t if all but t of A′
is = I (most will be I, but if ≤ t of them

are errors then it has weight t).

• B =
∑

iBi is a t-qubit error if weight(Bi) ≤ t for all i.

• N (·) is a t-qubit error channel if each Kraus operator Ei is a t-qubit error.

2 General errors

2.1 Shore 9-qubit code with general errors

We’ve already shown that the Shore 9-qubit code works for any arbitrary single Pauli error,
but now we will see how it works on all other one-qubit errors. Let’s see how it can correct
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the rotation channel.

Rθ =

(
e−iθ 0
0 eiθ

)
=

(
cos θ − i sin θ 0

0 cos θ + i sin θ

)
= cos θ · I− i sin θ · Z

(Rθ)k |ψ⟩L = (cos θ · I− i sin θ · Z)k |ψ⟩L
= cos θ |ψ⟩L − i sin θ · Zk |ψ⟩L

error detection
algorithm−→ cosθ |ψ⟩L |”no error”⟩ − isinθ · Zk |ψ⟩ |”Z error on qubit k”⟩

There are two things we can do going forward:

Strategy 1 (measure syndrome):
w.p. cos2θ measure ”no error” and collapse the state to |ψ⟩L or w.p. sin2θ measure ”Z error
on qubit k” and collapse the state to Zk |ψ⟩L
In this case, we had a general error but just ran the algorithm like we had a Z error. In
the end, measuring the syndrome collapsed the state into I |ψ⟩L or Z |ψ⟩L. If it happens to
collapse to the logical state where the Z error was applied, we can fix it because we know
the result of the syndrome measurement.

Strategy 2 (error correct coherently):

cosθ |ψ⟩L |”no error”⟩ − isinθ · Zk |ψ⟩ |”Zk error”⟩

correct−→ cosθ |ψ⟩L |”no error”⟩ − isinθ |ψ⟩ |”Zk error”⟩
= |ψ⟩L ⊗ (cosθ |”no error”⟩ − isinθ |”Zk error”⟩)

Here the syndrome part is independent of the logical state, so we discard it and are just
left with |ψ⟩L. For more general errors think of the syndrome as a vector (in this case
(cosθ |”no error”⟩ − isinθ |”Zk error”⟩) is the vector).

2.2 General Errors

We can correct general errors by expressing it as a linear combination of Pauli errors.
General one qubit error:(

a b
c d

)
=

(a+d
2

+ a−d
2

b+c
2

+ b−c
2

b+c
2

− b−c
2

a+d
2

− a−d
2

)

= (
a+ d

2
) · I+ (

a− d

2
) · Z + (

b+ c

2
) ·X + (

b− c

2
) · iY
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Fact: Pauli matrices span all 2× 2 matrices ∴ if we can correct all single-qubit Pauli errors,
we can correct all one-qubit errors. This is often called the discretization\digitization of
errors.
This means that you only need to correct a finite number of errors. If you can do this then
you can correct anything those errors span.

Def: given a code space C and Hilbert space H

1. A quantum error correcting code (QECC) is a subspace C ⊆ Hphysical

2. An encoding map is a unitary U : Hlogical → C

e.g. Hlogical = (C2)⊗k, Hphysical = (C2)⊗n, C = span{|x̄⟩}x∈{0,1}k

3. A set of errors E is corrected by C if there exists a quantum algorithm Rec(·) s.t.
∀E ∈ E , |ψ⟩L ∈ C, Rec( 1√

PE|ψ
E · |ψ⟩L = |ψ⟩L)

Let N be a quantum channel with Kraus operators Ei ∈ E .

N (|ψ⟩L ⟨ψ|L) = output
1√
PEi|ψ

Ei |ψ⟩L w.p. PEi|ψ

Rec(·)−→ |ψ⟩L

The algorithm Rec(·) can be represented as a quantum circuit as in Figure 1.

1√
PE|ψ

Ei |ψ⟩L
URec

|ψ⟩L

|0a⟩
∣∣syndE|ψ

〉
Figure 1: Here is the Stinespring representation of the channel Rec(·)

The top row is our input and output values, while the bottom row is the ancilla qubits.
This ancilla register is not completely junk as it records the error; however, this error may
depend on ψ.

Fact: Let E be the set of errors on C that Rec(·) corrects. Then E is a linear subspace (of
matrices).
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Proof: Let E1, E2 ∈ E

1√
PE1+E2|ψ

(E1 + E2) |ψ⟩L = α
1√
PE1|ψ

E1 |ψ⟩L + β
1√
PE2|ψ

E2 |ψ⟩L

URec−→ |ψ⟩L ⊗ (α
∣∣syndE1|ψ

〉
+ β

∣∣syndE2|ψ
〉
)

= |ψ⟩L
∣∣syndE1+E2|ψ

〉
□
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